Chapter 3

Sequences Mathematical Induction Recursion

•Sequences

Sequences

•Sequences represent ordered lists of elements.

•A sequence is defined as a function from a subset of **N** to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.

•Example:

•subset of N: 1 2 3 4 5 ...

S: 2 4 6 8 10 ...

Sequences

- •We use the notation $\{a_n\}$ to describe a sequence.
- Important: Do not confuse this with the {} used in set notation.
- •It is convenient to describe a sequence with a formula.
- •For example, the sequence on the previous slide can be specified as $\{a_n\}$, where $a_n = 2n$.

The Formula Game

What are the formulas that describe the following sequences a_1 , a_2 , a_3 , ... ?

•1, 3, 5, 7, 9,	a _n = 2n - 1
-1, 1, -1, 1, -1,	a _n = (- <u>1</u>) ⁿ
2, 5, 10, 17, 26,	a _n = n ² + <u>1</u>
0.25, 0.5, 0.75, 1, 1.25	a _n = 0.25n
3, 9, 27, 81, 243,	$a_n = 3^n$

Strings

- •Finite sequences are also called strings, denoted by $a_1a_2a_3...a_n$.
- •The length of a string S is the number of terms that it consists of.
- •The empty string contains no terms at all. It has length zero.

Summations

What does stand for i=m

•It represents the sum $a_m + a_{m+1} + a_{m+2} + \dots + a_n$.

•The variable j is called the index of summation, running from its lower limit m to its upper limit n. We could as well have used any other letter to denote this index.

Summations

How can we express the sum of the first 1000 terms of the sequence $\{a_n\}$ with $a_n = n^2$ for n = 1, 2, 3, ...?

It is so much work to calculate this...

Summations

•It is said that Friedrich Gauss came up with the following formula:

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

When you have such a formula, the result of any summation can be calculated much more easily, for example:

$$\sum_{j=1}^{100} j = \frac{100(100+1)}{2} = \frac{10100}{2} = 5050$$

Arithemetic Series

•How does:
$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$
 ???

Observe that: 1 + 2 + 3 +...+ n/2 + (n/2 + 1) +...+ (n - 2) + (n - 1) + n

Geometric Series

•How does:

$$\sum_{j=0}^{n} a^{j} = \frac{a^{(n+1)} - 1}{(a-1)}$$
???

Observe that:

 $S = 1 + a + a^2 + a^3 + ... + a^n$

 $aS = a + a^2 + a^3 + ... + a^n + a^{(n+1)}$

so,
$$(aS - S) = (a - 1)S = a^{(n+1)} - 1$$

Therefore, $1 + a + a^2 + ... + a^n = (a^{(n+1)} - 1) / (a - 1).$

For example: 1 + 2 + 4 + 8 + ... + 1024 = 2047.

Useful Series

Double Summations

•Corresponding to nested loops in C or Java, there is also double (or triple etc.) summation:

•Example:

 $\sum_{i=1}^{5} \sum_{j=1}^{2} ij$ = $\sum_{i=1}^{5} (i+2i)$ = $\sum_{i=1}^{5} 3i$

Table 2 in Section 3.2 contains some very useful formulas for calculating sums.

=3+6+9+12+15=45

Follow me for a walk through...

Mathematical Induction

Induction

•The principle of mathematical induction is a useful tool for proving that a certain predicate is true for all natural numbers.

•It cannot be used to discover theorems, but only to prove them.